119 research outputs found

    TCF/Lef1 activity controls establishment of diverse stem and progenitor cell compartments in mouse epidermis

    Get PDF
    This work investigates cell fate and lineages of hair follicles and sebaceous glands (SG) in the mouse epidermis. The combination of transgenic models with complementary tracing techniques provides unequivocal evidence for a direct contribution of bulge stem cells to the SG units as well as stem cell niches within the isthmus region

    Conjunctival Reconstruction with Progenitor Cell-Derived Autologous Epidermal Sheets in Rhesus Monkey

    Get PDF
    Severe ocular surface diseases are some of the most challenging problems that the clinician faces today. Conventional management is generally unsatisfactory, and the long-term ocular consequences of these conditions are devastating. It is significantly important to find a substitute for conjunctival epithelial cells. This study was to explore the possibility of progenitor cell-derived epidermal sheets on denuded amniotic membrane to reconstruct ocular surface of conjunctiva damaged monkeys. We isolated epidermal progenitor cells of rhesus monkeys by type IV collagen adhesion, and then expanded progenitor cell-derived epidermal sheets on denuded amniotic membrane ex vivo. At 3 weeks after the conjunctiva injury, the damaged ocular surface of four monkeys was surgically reconstructed by transplanting the autologous cultivated epidermal progenitor cells. At 2 weeks after surgery, transplants were removed and examined with Hematoxylin-eosin staining, Periodic acid Schiff staining, immunofluorescent staining, scanning and transmission electron microscopy. Histological examination of transplanted sheets revealed that the cell sheets were healthy alive, adhered well to the denuded amniotic membrane, and had several layers of epithelial cells. Electron microscopy showed that the epithelial cells were very similar in appearance to those of normal conjunctival epithelium, even without goblet cell detected. Epithelial cells of transplants had numerous desmosomal junctions and were attached to the amniotic membrane with hemidesmosomes. Immunohistochemistry confirmed the presence of the conjunctival specific markers, mucin 4 and keratin 4, in the transplanted epidermal progenitor cells. In conclusion, our present study successfully reconstructed conjunctiva with autologous transplantation of progenitor cell-derived epidermal sheets on denuded AM in conjunctival damaged monkeys, which is the first step toward assessing the use of autologous transplantation of progenitor cells of nonocular surface origin. Epidermal progenitor cells could be provided as a new substitute for conjunctival epithelial cells to overcome the problems of autologous conjunctiva shortage

    The monoclonal antibody EPR1614Y against the stem cell biomarker keratin K15 lacks specificity and reacts with other keratins

    Get PDF
    Keratin 15 (K15), a type I keratin, which pairs with K5 in epidermis, has been used extensively as a biomarker for stem cells. Two commercial antibodies, LHK15, a mouse monoclonal and EPR1614Y, a rabbit monoclonal, have been widely employed to study K15 expression. Here we report differential reactivity of these antibodies on epithelial cells and tissue sections. Although the two antibodies specifically recognised K15 on western blot, they reacted differently on skin sections and cell lines. LHK15 reacted in patches, whereas EPR1614Y reacted homogenously with the basal keratinocytes in skin sections. In cultured cells, LHK15 did not react with K15 deficient NEB-1, KEB-11, MCF-7 and SW13 cells expressing only exogenous K8 and K18 but reacted when these cells were transduced with K15. On the other hand, EPR1614Y reacted with these cells even though they were devoid of K15. Taken together these results suggest that EPR1614Y recognises a conformational epitope on keratin filaments which can be reconstituted by other keratins as well as by K15. In conclusion, this report highlights that all commercially available antibodies may not be equally specific in identifying the K15 positive stem cell

    Investigation of K14/K5 as a stem cell marker in the limbal region of the bovine cornea

    Get PDF
    Background: Identification of stem cells from a corneal epithelial cell population by specific molecular markers has been investigated previously. Expressions of P63, ABCG2 and K14/K5 have all been linked to mammalian corneal epithelial stem cells. Here we report on the limitations of K14/K5 as a limbal stem cell marker. Methodology/Principal Findings: K14/K5 expression was measured by immunohistochemistry, Western blotting and Real time PCR and compared between bovine epithelial cells in the limbus and central cornea. A functional study was also included to investigate changes in K5/14 expression within cultured limbal epithelial cells undergoing forced differentiation. K14 expression (or its partner K5) was detected in quiescent epithelial cells from both the limbal area and central cornea. K14 was localized predominantly to basal epithelial cells in the limbus and suprabasal epithelial cells in the central cornea. Western blotting revealed K14 expression in both limbus and central cornea (higher levels in the limbus). Similarly, quantitative real time PCR found K5, partner to K14, to be expressed in both the central cornea and limbus. Following forced differentiation in culture the limbal epithelial cells revealed an increase in K5/14 gene/protein expression levels in concert with a predictable rise in a known differentiation marker. Conclusions/Significance: K14 and its partner K5 are limited not only to the limbus but also to the central bovine cornea epithelial cells suggesting K14/K5 is not limbal specific in situ. Furthermore K14/K5 expression levels were not lowered (in fact they increased) within a limbal epithelial cell culture undergoing forced differentiation suggesting K14/K5 is an unreliable maker for undifferentiated cells ex vivo

    Epidermal Stem Cells Are Defined by Global Histone Modifications that Are Altered by Myc-Induced Differentiation

    Get PDF
    Activation of Myc induces epidermal stem cells to exit their niche and differentiate into sebocytes and interfollicular epidermis, a process that is associated with widespread changes in gene transcription. We have identified chromatin modifications that are characteristic of epidermal stem cells and investigated the effects of Myc activation. Quiescent stem cells in the interfollicular epidermis and the hair follicle bulge had high levels of tri-methylated histone H3 at lysine 9 and H4 at lysine 20. Chromatin in both stem cell populations was hypoacteylated at histone H4 and lacked mono-methylation of histone H4 at lysine 20. Myc-induced exit from the stem cell niche correlated with increased acetylation at histone H4 and transiently increased mono-methylation at lysine 20. The latter was replaced by epigenetic modifications that are largely associated with chromatin silencing: di-methylation at histone H3 lysine 9 and histone H4 lysine 20. These modifications correlated with changes in the specific histone methyltransferases Set8 and Ash-1. The Myc-induced switch from mono- to di-methylated H4K20 required HDAC activity and was blocked by the HDAC inhibitor trichostatin A (TSA). TSA treatment induced a similar epidermal phenotype to activation of Myc, and activation of Myc in the presence of TSA resulted in massive stimulation of terminal differentiation. We conclude that Myc-induced chromatin modifications play a major role in Myc-induced exit from the stem cell compartment

    Miz1 Is a Critical Repressor of cdkn1a during Skin Tumorigenesis

    Get PDF
    The transcription factor Miz1 forms repressive DNA-binding complexes with the Myc, Gfi-1 and Bcl-6 oncoproteins. Known target genes of these complexes encode the cyclin-dependent kinase inhibitors (CKIs) cdkn2b (p15Ink4), cdkn1a (p21Cip1), and cdkn1c (p57Kip2). Whether Miz1-mediated repression is important for control of cell proliferation in vivo and for tumor formation is unknown. Here we show that deletion of the Miz1 POZ domain, which is critical for Miz1 function, restrains the development of skin tumors in a model of chemically-induced, Ras-dependent tumorigenesis. While the stem cell compartment appears unaffected, interfollicular keratinocytes lacking functional Miz1 exhibit a reduced proliferation and an accelerated differentiation of the epidermis in response to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Tumorigenesis, proliferation and normal differentiation are restored in animals lacking cdkn1a, but not in those lacking cdkn2b. Our data demonstrate that Miz1-mediated attenuation of cell cycle arrest pathways via repression of cdkn1a has a critical role during tumorigenesis in the skin

    Expression of Kruppel-Like Factor KLF4 in Mouse Hair Follicle Stem Cells Contributes to Cutaneous Wound Healing

    Get PDF
    Kruppel-like factor KLF4 is a transcription factor critical for the establishment of the barrier function of the skin. Its function in stem cell biology has been recently recognized. Previous studies have revealed that hair follicle stem cells contribute to cutaneous wound healing. However, expression of KLF4 in hair follicle stem cells and the importance of such expression in cutaneous wound healing have not been investigated.Quantitative real time polymerase chain reaction (RT-PCR) analysis showed higher KLF4 expression in hair follicle stem cell-enriched mouse skin keratinocytes than that in control keratinocytes. We generated KLF4 promoter-driven enhanced green fluorescence protein (KLF4/EGFP) transgenic mice and tamoxifen-inducible KLF4 knockout mice by crossing KLF4 promoter-driven Cre recombinase fused with tamoxifen-inducible estrogen receptor (KLF4/CreER™) transgenic mice with KLF4(flox) mice. KLF4/EGFP cells purified from dorsal skin keratinocytes of KLF4/EGFP transgenic mice were co-localized with 5-bromo-2'-deoxyuridine (BrdU)-label retaining cells by flow cytometric analysis and immunohistochemistry. Lineage tracing was performed in the context of cutaneous wound healing, using KLF4/CreER™ and Rosa26RLacZ double transgenic mice, to examine the involvement of KLF4 in wound healing. We found that KLF4 expressing cells were likely derived from bulge stem cells. In addition, KLF4 expressing multipotent cells migrated to the wound and contributed to the wound healing. After knocking out KLF4 by tamoxifen induction of KLF4/CreER™ and KLF4(flox) double transgenic mice, we found that the population of bulge stem cell-enriched population was decreased, which was accompanied by significantly delayed cutaneous wound healing. Consistently, KLF4 knockdown by KLF4-specific small hairpin RNA in human A431 epidermoid carcinoma cells decreased the stem cell population and was accompanied by compromised cell migration.KLF4 expression in mouse hair bulge stem cells plays an important role in cutaneous wound healing. These findings may enable future development of KLF4-based therapeutic strategies aimed at accelerating cutaneous wound closure
    corecore